Relating crop yield to topographic attributes using Spatial Analysis Neural Networks and regression

نویسندگان

  • Timothy R. Green
  • Jose D. Salas
  • Ana Martinez
  • Robert H. Erskine
چکیده

Land-surface topographic attributes can be useful for estimating stable spatial patterns of crop yield caused by spatial variability in soils and water availability. We present spatial analyses of grain yield for three fields of dryland winter wheat in northeastern Colorado using topographic attributes as explanatory variables. Topographic attributes including elevation, slope, aspect, curvature, specific contributing area, and wetness index were computed from a 10-m digital elevation model. A Spatial Analysis Neural Network (SANN) algorithm was used for joint spatial interpolation and yield prediction from the topographic attributes. SANN prediction errors were compared with the results of Multiple Linear Regression (MLR). SANN and MLR were assessed in terms of bias and relative root mean squared error (rRMSE) using validation data. SANN out-performed MLR in multivariate estimation, but not for the univariate cases. The greatest advantage of SANN was seen using four or more topographic attributes, whereas MLR showed diminishing efficiency with more than three explanatory variables. Prediction/interpolation errors within a given field were reduced substantially by using the spatial coordinates (latitude and longitude) in tandem with topographic attributes. The rRMSE value reached a minimum of 0.44 (model efficiency, E=0.80) for interpolation with SANN on the West field. Using only topographic attributes as input, the minimum rRMSE values were 0.59 (E=0.65) for SANN with 5 variables and 0.72 (E=0.48) for MLR with 4 or 5 explanatory variables. Thus, this study demonstrated the utility of SANN with topographic attributes that contain implicit soil and water information for estimating spatial patterns of dryland crop yield. © 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

کاربرد روش‏های رگرسیونی و شبکه‏های عصبی به‌ منظور تخمین هدایت هیدرولیکی اشباع خاک منطقه زاگرس مرکزی

With the advent of advanced geographical informational systems (GIS) and remote sensing technologies in recent years, topographic (elevation, slope, and aspect) and vegetation attributes are routinely available from digital elevation models (DEMs) and normalized difference vegetation index (NDVI) at different spatial (watershed, regional) scales. This study explores the use of topographic and v...

متن کامل

کاربرد شبکه‌های عصبی مصنوعی در پیش‌بینی عملکرد محصول کلزا

Crop yield prediction has an important role in agricultural policies such as specification of the crop price. Crop yield prediction researches have been based on regression analysis. In this research canola yield was predicted using Artificial Neural Networks (ANN) using 11 crop year climate data (1998-2009) in Gonbad-e-Kavoos region of Golestan province. ANN inputs were mean weekly rainfall, m...

متن کامل

A data partitioning scheme for spatial regression

Precision agriculture data consisting of crop yield and topographic features are examined with the objective of explaining yield variability as a function of topographic attributes in order to extrapolate this knowledge to unseen agricultural sites. It is demonstrated that random data partitioning into training, validation and test subsets is not appropriate when dealing with agricultural probl...

متن کامل

بررسی رابطه بین تولید گندم و خصوصیات پستی و بلندی زمین در منطقه اردل استان چهارمحال و بختیاری

Crop yield, soil properties and erosion are strongly affected by terrain parameters. Therefore, knowledge about the effects of terrain parameters on strategic crops such as wheat production will help us with sustainable management of landscape. This study was conducted in 900ha, of Ardal district, Charmahal and Bakhtiari Province to develop regression models on wheat yield components vs. terrai...

متن کامل

برآورد خصوصیات افق سطحی خاک با استفاده از مدل رقومی پستی و بلندی زمین (مطالعه موردی: بخشی از حوزه آبخیز مهر سبزوار استان خراسان)

Conventional soil survey methods for soils within the watersheds in Iran require a significant budget with many soil surveyors and much time. Additionally, no accurate and reliable information exists on the spatial variability of superface soil parameters in order to predict the soil loss by different models (RUSLE, PISAC, EUPOSEM, MORGAN). Also information on planning and management activities...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007